Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae.

نویسندگان

  • S P Kidambi
  • G W Sundin
  • D A Palmer
  • A M Chakrabarty
  • C L Bender
چکیده

Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cur) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and found that a subset of the P. syringae strains showed a dramatic increase in exopolysaccharide (EPS) production on mannitol-glutamate medium containing CuSO4 at 250 micrograms/ml. A modified carbazole assay indicated that the EPS produced on copper-amended media contained high levels of uronic acids, suggesting that the EPS was primarily alginic acid. Uronic acids extracted from selected strains were further confirmed to be alginate by demonstrating their sensitivity to alginate lyase and by descending paper chromatography following acid hydrolysis. Subinhibitory levels of arsenate, cobalt, lithium, rubidium, molybdenum, and mercury did not induce EPS production, indicating that alginate biosynthesis is not induced in P. syringae cells exposed to these heavy metals. A 200-kb plasmid designated pPSR12 conferred a stably mucoid phenotype to several P. syringae recipients and also increased their resistance to cobalt and arsenate. A cosmid clone constructed from pPSR12 which conferred a stably mucoid phenotype to several P. syringae strains but not to Pseudomonas aeruginosa was obtained. Results obtained in this study indicate that some of the signals and regulatory genes for alginate production in P. syringae differ from those described for alginate production in P. aeruginosa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of alginate biosynthesis in Pseudomonas syringae pv. syringae.

Both Pseudomonas aeruginosa and the phytopathogen P. syringae produce the exopolysaccharide alginate. However, the environmental signals that trigger alginate gene expression in P. syringae are different from those in P. aeruginosa with copper being a major signal in P. syringae. In P. aeruginosa, the alternate sigma factor encoded by algT (sigma22) and the response regulator AlgR1 are required...

متن کامل

AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae.

Pseudomonas aeruginosa and the phytopathogen P. syringae produce the exopolysaccharide alginate, which is a copolymer of D-mannuronic and L-guluronic acids. One of the key regulatory genes controlling alginate biosynthesis in P. aeruginosa is algT, which encodes the alternate sigma factor, sigma(22). In the present study, the algT gene product from P. syringae pv. syringae showed 90% amino acid...

متن کامل

The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster.

The phytopathogenic bacterium Pseudomonas syringae pv. glycinea infects soybean plants and causes bacterial blight. In addition to P. syringae, the human pathogen Pseudomonas aeruginosa and the soil bacterium Azotobacter vinelandii produce the exopolysaccharide alginate, a copolymer of d-mannuronic and l-guluronic acids. Alginate production in P. syringae has been associated with increased fitn...

متن کامل

Characterization of alginate lyase from Pseudomonas syringae pv. syringae.

The gene encoding alginate lyase (algL) in Pseudomonas syringae pv. syringae was cloned, sequenced, and overexpressed in Escherichia coli. Alginate lyase activity was optimal when the pH was 7.0 and when assays were conducted at 42 degrees C in the presence of 0.2 M NaCl. In substrate specificity studies, AlgL from P. syringae showed a preference for deacetylated polymannuronic acid. Sequence a...

متن کامل

Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production.

Mutations in the global regulatory genes gacS and gacA render Pseudomonas syringae pv. syringae strain B728a completely nonpathogenic in foliar infiltration assays on bean plants. It had been previously demonstrated that gac genes regulate alginate production in Pseudomonas species, while other published work indicated that alginate is involved in the pathogenic interaction of P. syringae on be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 61 6  شماره 

صفحات  -

تاریخ انتشار 1995